

Consequences of an Ice-Diminished Arctic Ocean

Julienne Stroeve

The Situation

 Passive microwave satellite observations have documented a 30-40% reduction in the end-of-summer ice cover since the late 1970s.

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 **Year**

Regional Ice Losses

- The last decade has seen ice loss off both the Eurasian and North American coasts.
- Since 2007, either the NWP or the NSR has opened during summer, sometimes both.

Ice Thickness has also Declined

 Thickness observations from submarine records and satellite altimetry show thinning ice cover.

Thinner Ice is Reflected in a Younger Ice Cover

Ice Age for week 9 (Feb 27 to Mar 4)

In 2012, less than 3% of the ice cover is 5 years or older

Future Projections from CMIP5

September Ice Extent: CMIP5 vs CMIP3

Climate Impacts of Reduced Sea Ice Cover

- Arctic Amplification has been a common feature of climate model predictions.
- Large fluxes of heat and moisture during fall/winter from loss of sea ice contribute to amplified warming in the Arctic.

Recent Sea Ice Loss has Warmed the Atmosphere

- Arctic Basin
 sea ice and T_m
 air temperature
 anomalies
- Warming most pronounced during autumn.

Impacts on Autumn Precipitable Water

Anomalies in SON precipitable water during low/high ice years

Impacts on Cyclone Associated Precipitation

 While positive precipitable water anomalies occur where ice has retreated, CAP anomalies dominate GNB region.

Coastal Communities are Threatened

 Lack of sea ice exposes shoreline communities to waves and storms that are creating severe erosion problems.

Impacts on Marine Activity

Hard Minerals

Maritime Tourism

Major Fisheries

Oil and Gas Summer Sea Lift

Exploration/Science

In 2004, ~6,000 ships

Summary Statements

- Sea ice thickness and extent has declined during the 2nd half of the 20th century/early 21st century.
- Models simulate continuing retreat of the ice cover and summer ice-free conditions as early as 2050.
- Climate impacts are already being felt.
- Increased development of Arctic natural resources (hydrocarbons, hard minerals, fisheries) will increase marine activity and risk of oil spills.

Observational Needs

- Accessibility and interoperability of products, through consistent formatting and metadata and/or easy to use freeware tools.
- Need for climate data records.
- For satellites, continuity is critical. This includes not only the PM record, but also VIS/ IR, SAR, Scatterometer, and altimetry.
- For *in situ*, ice mass buoys (including FYI), cameras, sensors that conduct staring-mode observations of change.

